Unsupervised Learning of Visual Representation by Solving Jigsaw Puzzles, ECCV 16

2018/11/27 20173130 Jaeyoon Kim

Image Retrieval with Mixed initiative and Multimodal Feedback, BMVC '18

- The system based on reinforcement learning chooses an action and let users answer their need or draw a sketch.
- The system Iteratively performs the action selection and finally gets adaptive retrieval result to users.

Table of Contents

- Introduction
 - Relationship with Image Retrieval
 - Context prediction task(relative position)
 - Its limitation
- Main Idea

• Experiment & Result

Introduction

- Relationship with Image Retrieval
- Context prediction task(relative position)
- Its limitation

Relationship with Image Retrieval

- In the class, we also saw performance improvement when fine-tuning with specific dataset.
- For fine-tuning with specific dataset, labels are necessary since it is performed in a supervised manner.
- Therefore, this unsupervised technique will be useful to cheap fine-tuning for image retrieval.

Figure in the class...

	[0] 0001	0.0.0	0.011	· · · · ·	0.00
Neura	d codes to	rained o	n ILSVRC	·	
Layer 5	9216	0.389		0.690*	3.09
Layer 6	4096	0.435	0.392	0.749*	3.43
Layer 7	4096	0.430	/ - >	0.736*	3.39
After retra	ining on	the Lan	dmarks data	set	
Layer 5	9216	0.387	/	0.674*	2.99
Layer 6	4096	0.545	0.512	0.793*	3.29
Layer 7	4096	0.538		0.764*	3.19
After retraining o	n turntal	ole view	s (Multi-viev	v RGB-D))
Layer 5	9216	0.348	<i>L</i> –	0.682*	3.13
Layer 6	4096	0.393	0.351	0.754*	3.56
Layer 7	4096	0.362	-	0.730*	3.53

Context Prediction, ICCV '15

Critical Problem of Context Prediction

- If only two tiles are given, the machine might suffer from an ambiguity.
- Can you answer only if the blow blue and red patches are given?
 - There might be ambiguity.
 - As its negative effect, it takes 4 weeks to train the network with the task. -> very slow!

Main Idea

What is jigsaw puzzle?

- The task is to separate an object into several puzzles and put the puzzles together.
- It was introduced as a pretext task to help children learn geography.

An example of this task

- 1. Sample 9 neighbor tiles figure (a).
- 2. Obtain a puzzle by randomly shuffling the sampled tiles figure (b).
- 3. Determine all positions of the shuffled tiles figure (c).
- -> This work is **less ambiguous**, compared to previous method since all patches are given to network.

Problem formulation as classification

- Given 9 tiles, there are 9! = 362,880 possible permutations.
- Due to **too many possible permutation**(classes), They quantize the possible permutation into **64 classes**.

Problem formulation as classification

- The network takes 9 tiles as an input in a siamese manner
- And it predicts a specific sequence among 64 classes.
- Generate classification loss and update the network via backpropagation

Experiments & Results

Transfer learning for evaluation

 They use the feature extractor which is in below red box for evaluating the network.

• They perform transfer learning for each task such as classification, detection

and semantic segmentation.

Results on PASCAL VOC 2007

- They fine-tuned the pre-trained network with PASCAL VOC training data.
- Blue box is a supervised method and red box is Context Prediction method.
- This method is much superior to Context Prediction in terms of pre-training time as well as accuracy thanks to less ambiguity of the task.

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky <i>et al.</i> [25]	3 days	1000 class labels	78.2%	56.8%	48.0%
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch et al. [10]	4 weeks	context	55.3%	46.6%	-
Pathak et al. [30]	14 hours	$\operatorname{context}$	56.5%	44.5%	29.7%
Ours	2.5 days	context	67.6%	53.2 %	37.6%

Visualization of top activations

• We can see that the network is able to **capture semantic information** as going to higher layer even though any semantic label is not given during training.

Image Retrieval Results

• They found nearest neighbor results on the PASCAL VOC dataset

Thank you!!